Distal Functionalization

2024/ 11/ 7 (Thu.) Kotaro ASADA

Contents

1. Introduction

- 1-1) Definition of Distal Functionalization
- 1-2) Early Research
- 1-3) Strategies

2. Template and Transition Metal-mediated

- 2-1) ortho- or meta-C-H Olefination (w/U shaped template)
- 2-2) Distal para-C-H Functionalization (w/D shaped template)
- 2-3) Directing Group-enabled Regioselectivity (alkyl substrate)
- 2-4) Transient Mediator

3. Noncovalent Interaction-enabled Distal Functionalization

- 3-1) Remote C–H Borylation Mediated by a Bifunctional Template Anchored through Potassium Coordination
- 3-2) Ion-pair Interaction wtih Ammonium Cation

4. Non-directed Distal C–H Functionalization

- 4-1) Non-directed Ligand Control
- 4-2) Non-directed Reagent Control
- 4-3) Chain Walking

5. Proposal

1. Introduction

1-1. Definition of distal functionalization

"indirect and selective activation of a site distant(2-3 atoms) from the initial functional group"

Advantage : Steric and/or electronic influences can be manipulated through the design of suitable catalysts, ligands, or reagents that alter the traditional patterns of regioselectivity.

1-2. Early research in distal functionalization

Enzymatic distal functionalization

First distal C-H oxidation (Breslow 1969)

Ronald Breslow

- 1) Yu, J-Q., J. Am. Chem. Soc. 2020, 142, 10571
- 2) Marek, I. Nat. Chem. 2016, 8, 209.
- 3) Breslow, R. Acc. Chem. Res. 1980, 13, 170.

1. Introduction

- 1-3. Strategies for distal functionalization
 - i) Template and Transition metal-mediated

ii) Noncovalent interaction-enabled distal C-H functionalization

iii) Non-directed distal C-H functionalization

Reagent/ligand controlled activation

2-1. Pd(II)-Catalyzed *ortho*- or *meta*-C–H Olefination of Phenol Derivatives (w/U shaped template) (Yu, 2013)

Refference 1) Yu, J.-Q., *J. Am. Chem. Soc.* **2013**, *135*, 7567

2-2. Distal para-C–H Functionalization of Arenes (w/ D shaped template)

- 1) Maiti, D.et al. J. Am. Chem. Soc. 2015, 137, 11888
- 2) Bag, S. et al. J. Am. Chem. Soc. 2015, 137, 11888.
- 3) Patra, T. et al. Angew. Chem. Int. Ed. 2016, 55, 7751.

2-3. Directing group-enabled regioselectivity (alkyl substrate)

2-3.1. Sharpless asymmetric epoxidation

2-3.2 Pd catalyzed δ -C(sp3)–H alkenylation of aliphatic amines

- 1) Sharpless, K. B.et al. J. Am. Chem. Soc. 1980, 102, 5974
- 2) Shi, B.-F.et al. J. Am. Chem. Soc. 2016, 138, 10750

2. Template and Transition metal-mediated

2-2.1 Transient mediator assisted Pd catalyzed distal C–H activation (mediator : Norbornene) (Yu, 2015)

2-2.2 Transient mediator assisted Pd catalyzed distal C–H activation (mediator : CO₂) (Larroas, 2011)

Refference

1) Yu, J.-Q. et al. Nauter 2015, 519, 338

2) Larroas, I. et al. Angew. Chem. Int. Ed. 2011, 50, 9429.

3) Dong, G. et al. Chem. Rev. 2019, 119, 7478

3. Noncovalent interaction-enabled distal functionalization

3-1. Remote C–H Borylation Mediated by a Bifunctional Template Anchored through Potassium Coordination

3-1.1 O-K noncovalent interaction (para-selective C-H borylation)

Effect of alkali metal on selectivity.

MO ^t Bu	additive	conv. (%)	para/meta	DDia
LiO ^t Bu	none	-	-	PinB BPin
NaO ^t Bu	none	75	3.8/1.0	
KO ^t Bu	none	>99	32.3/1.0	
KO ^t Bu	18-Crown-6	90	5.6/1.0	EtO [^] O····[K]—Ó

3-1.2 Cation-pi interaction (*meta*-selective C-H borylation) (Chattopadhyay, 2018)

Refference

1) Chattopadhyay, B. et al. J. Am. Chem. Soc. 2017, 139, 7745–7748

2) Chattopadhyay, B. et al. et al. Angew. Chem. Int. Ed. 2018, 57, 15762 –15766

via

3. Noncovalent interaction-enabled distal functionalization

3-2 Ion-pair interaction wtih ammonium cation

3-2.1 Ion-pairing with a Bulky countercation (Phipps, 2019)

3-2.2 Combination of hydrogen-bonding and ion-pair interaction(Phipps, 2020)

¹⁾ Phipps, R. J. et al. J. Am. Chem. Soc. 2019, 141, 15477

²⁾ Phipps, R. J. et al. Science 2020, 367, 1246.

4-1. Non-directed ligand controled distal C-H functionalization

4-1.1Bulky ligand controlled para-C-H borylation (Itami, 2015)

4-1.2 Ligand enabled remote C-H functionalization (Yu, 2017)

Refference

1) Itami, K, et. al. J. Am. Chem. Soc. 2015, 137, 5193.

2) Yu, J.-Q. et. al. Nature 2017, 551, 489.

4. Non-directed distal C–H functionalization

4-2. Non-directed reagent controled distal C-H functionalizaion

4-2.1. Base enabled para-C-H fluoromethylation via 1,5-hydrogen shift (Altman, 2020)

The use of weak bases (pKa : 4.0 to 8.0) and too bulky trialkyl amine bases favoured the benzylation product. Arylation products only formed w/ trialkyl amine bases with pKa 8.0-10.5.

4-2.2. Distal C–H functionalization by thianthrenation (Ritter, 2019)

Refference

1) Altman, R. A. et al. Nat. Chem. 2020, 12, 489.

2) Ritter, T. et al. Nature. 2019, 567, 223.

4-3. Chain walking

4-3.1. General mechanism of olefin isomerization

a) 1,2-hydride shift

Reaction starts with a metal-hydride (M–H)

c) 1,3-hydride shift (with ligand)

b) 1,3-hydride shift (agostic interaction)

It requires two vacant orbitals: 1. olefine coordination

2. C-H allylic activation to occur

Stereocontrol

a) 1,2-hydride shift

b) 1,3-hydride shift

1,2-allylic strain

steric interactions with ML_n 1,3-allylic strain

4-3.2. Cycloisomerization/Hydrogenation of 1,n-dienes (Kakiuchi, 2012) (1,2-hydride shift)

Refference

1) Marek, I. et al. ACS Cent Sci. 2018, 4,153.

²⁾ Marek, I. et al. ACS Catal. 2020, 10, 5793.

4-3. Chain walking

4-3.3. Merging allylic carbon-hydrogen and selective carbon-carbon bond activation (Marek, 2014)(1,3-hydride shift/agostic interaction)

4-3.4. Isomerization-deuteration using D₂O. (Grotjahn, 2009) (1,3-hydride shift/with ligand)

- 1) Marek, I. et al. Nature. 2014, 505, 199.
- 2) Grotjahn, B. et al. Jacs. 2009, 131, 10354.

4-3. Chain walking 4-3.5. Remote carboxylation (Martin, 2017)

Regioconvergent carboxylation of alkanes

Switchable site-selective carboxylation of unactivated alkyl bromides

Thermodynamically controlled intermediates (Ni on α -position of carbonyls) at higher temperatures

4-3.6. Long-Range Isomerizaion (Mazet, 2016)

72% yield

Refference

1) Martin, R. et al. Nature. 2017, 545, 84.

2) Mazet, C. et al. Jacs. 2016, 138, 10344.