Suzuki-Miyaura cross coupling

2024/ 11/ 1 (Fri) Haruki Matsuda

Contents

1. Introduction

- 1-1) C(sp²)-C(sp²) bond formation
- 1-2) Reaction mechanism

2. Examples of the catalyst based on key structure

- 2-1) Triaryl phosphine
- 2-2) Trialkyl phosphine
- 2-3) Buchwald-type phosphine
- 2-4) NHC(N-Heterocyclic carbene) catalyst
- 2-5) Catacxium A

3. Improvement of reactivity

- 3-1) Effect of halogen ion
- 3-2) Effect of Phase-transfer catalyst
- 3-3) Reaction mecahnism when Phase-transfer catalyst is used

4. Non-basic conditions

- 4-1) Cationic intermediate
- 4-2) Neutral condition

5. Proposal

1. Introduction 1-1) C(sp²)-C(sp²) bond formation

 $\mathbf{Y} = \mathbf{M}\mathbf{q}\mathbf{X}'$ • ArMgX' is highly reactive × ArMgX' is sensitive to water × Unable to use substrates react with ArMgX' (carboxylic acid, ketone, ester etc.)

Negishi Cross Coupling (1977)²⁾

..... Y = ZnX'• Similar reactivity to Kumada coupling and wide substrate application range × ArZnX' is sensitive to water × Unable to use highly acidic hydrogen and highly reactivefunctional groups as substrates (carboxylic acid, aldehyde, hydroxy group etc.)

Makoto Kumada

Ei-ichi Negishi

Suzuki-Miyaura Cross Coupling (1979)³⁾

-----Y = Boronic acid or ester • Boronic acid is stable in water and acid • React even in air

Easy to handle

Norio Miyaura

Refference

- 1) Kumada, M. et al, J. Am. Chem. Soc. 1972, 94, 4374
- 2) Negishi, E. et al, J. Chem. Soc., Chem. Commun. 1977, 683
- 3) Suzuki, A., Miyaura, N., J. Am. Chem. Soc. 1979, 866

1. Introduction

1-2) Reaction mechanism⁴⁾

Oxidative addition

Electron rich Pd promotes oxidative addition

Transmetalation

Reductive elimination

2. Examples of the catalyst based on key structure

³⁾ Suzuki, A. et al, J. Am. Chem. Soc. 1979, 19, 866

⁵⁾ Fu, G. C. et al, Angew. Chem. Int. Ed. 1998, 37, 3387

2. Examples of the catalyst based on key structure

2-3) Buchwald-type phosphines⁶⁾

Structural features of the dialkylbiarylphosphines and their impact on the efficacy of catalysts using these ligands⁷

Refference

6) Buchwald, S. L. et al. J. Am. Chem. Soc. 2005, 127, 4685.

⁷⁾ Buchwald, S. L. et al. Acc. Chem. Res. 2008, 41, 1461.

2. Examples of the catalyst based on key structure

2-4) NHC (N-Heterocyclic carbene) catalyst⁸⁾⁹⁾

2-5) Catacxium A¹⁰⁾

CI B(OH) ₂	Ро 2
R +	to

Pd(OAc)₂ / 2 equiv ligand toluene, base, 100 °C

Entry	PR ₃	Pd [mol %]	Yield [%]	TON	TON : Turnover number
1	PPh ₃	0.1	5	50	
2	PhPCy ₂	0.1	23	230	
3 ^[a]	$(o-tol)PCy_2$	0.1	49	490	
4 ^[a]	$(o-anisyl)PCy_2$	0.1	42	420	
5 ^[12b]	$(o-biph)PCy_2$	0.05	93	1860	
6	$(o-biph)PCy_2$	0.01	47	4700	
7	PCy ₃	0.1	23	230	
8	$PtBu_3$	0.01	92	9200	
9	PtBu ₃	0.005	41	8200	
10	$BuPAd_2$	0.01	94	9400	
11	BuPAd ₂	0.005	87	17400)

[a] P/Pd = 4:1.

Refference

8) Peddiahgari, V. G. L., et al. Organometal Chem. 2018, 32, e4068.

- 9) Organ, M. G., et al. Angew. Chem. Int. Ed. 2007, 46, 2768.
- 10) Beller, M., et al. Angew. Chem. Int. Ed. 2000, 39, 4153.

3. Improvement of reactivity

Removal of Halogen ions in organic layer

Milner's report¹¹⁾

Refference 12) Hein. J. E. et al. Nature Communication., 2024, 15, 5436

3. Improvement of reactivity

3-2) Phase-transfer catalyst¹²⁾

3-3) Reaction mechanism when Phase-transfer catalyst is used¹²⁾

Control experiment

Plausible mechanism

When a phase transfer catalyst is added, the reaction proceeds on Path B

4. Non-basic conditions

protodeboronation

Refference

- 13) Carrow, B. P. et al. J. Am. Chem. Soc. 2017, 139, 12418.
- 14) Demoute, J.-P. et al. Tetrahedron Letters. 1996, 37, 3857.
- 15) Schoenebeck et al. Angew. Chem. Int. Ed. 2021, 60, 7007.
- 16) Ritter, T. et al. Nature Synthesis. 2024, https://doi.org/10.1038/s44160-024-00631-4

Leiws acidic condition by Hosoya¹⁷⁾

Via cationic palladium(II) intermediate at room temperature

Refference

18) Nishihara. Y. et al. Tetrahedron 2013, 69, 2565.

¹⁹⁾ Sanford. M. S. et al. Nature 2018, 563, 100.

²¹⁾ Radius, U. *et al. J. Org. Chem.* **2016**, 81, 5789

23) Tobisu, M. Chatani, N. et al. J. Am. Chem. Soc. 2011, 133, 19505

11 59

1j 64^b

1k 47

²²⁾ Wilhelm, R. *et al. Chem. Commun.* **1999**, 2211