Brightening up "Classical" Reactions by Irradiating Visible Light

(光反応を応用した「古典的」反応の再興)

2024/12/6 (Fri.) Hayato Akao

Contents

1. Introduction

- 1-1) Photochemical Reaction
- 1-2) Photocatalytic Reaction
- 1-3) Application of Photochemistry to "Classical" Reaction

2. Oxidative Cleavage / Dihydroxylation of Alkenes

3. Oxidative Decarboxylative Reaction

- 4. Nucleophilic Addition
- 5. Pinacol Coupling
- 6. Proposal

1-1. Photochemical Reaction

Photoreaction = Reaction which starts with light energy.

$$S \xrightarrow{(cat), hv} P$$

Classification of Photochemical Reaction

Examples of 1) [Photoenergy is absorbed by Substrate (Reagent).]

¹⁾ Norrish, R. G. W. et al. *Nature*, **1936**, *138*, 1016.

²⁾ Norrish, R. G. W. et al. Nature, 1937, 140, 195.

- 3) Ciamician, G. et al. Ber. 1908, 41, 1928.
- 4) MacMillan. D, W. C. et al. J. Am. Chem. Soc. 2005, 127, 3696-3697.
- 5) Inoue, M. et al. Angew. Chem. Int. Ed. 2006, 45, 4843-4848.
- 6) Yoon, T. P. et al. Nat. Commun. 2021, 12, 5735.

1-2. Photocatalytic Reaction⁷⁾

Photophysical and Electrochemical Properties Transition Metal Catalysis⁸⁾

compound	$E_{1/2} (C^*/C)/V^{a}$	$E_{1/2} (C^+/C^*)/V^a$	$E_{1/2} (C/C^{-})/V^{a}$	$E_{1/2} (C^*/C^-)/V^{a}$	λ _{em} /nm	τ/ns	ref.
$[Ru(bpy)_3]^{2+}$	1.29 ^b	-0.81	-1.33 ^b	0.77	615 ^b	930 ^b	[9]
[Ir(ppy) ₃]	0.77 ^b	-1.73	-2.19 ^b	0.31	510 ^c	1.9·10 ³ ^с	[9]
[Cu(dap) ₂] ⁺	0.62 ^b	-1.43	-	-	670 ^c	270 ^c	[20]
$[Cr(L^{tBu})_3]$	0.15 ^d	-1.91	-	-	630 ^d	2.2 ^d	[32]
[Mo(L ^{Me}) ₃]	-0.02 ^d	-2.2	-	-	597 ^f	225 ^f	[33,34]
[Mo(L ^{tBu}) ₃]	-0.08 ^d	-2.3	-	-	585 ^f	1040, 2370 ^f	[34]
$[Cr(ddpd)_2]^{3+}$	-	-	-0.73 ^b	0.87	775 ^g	898 · 10 ³ g	[47]
$[Cr(dpq)_2]^{3+}$	-	-	-0.39 ^b	-	724, 747 ^g	1.2 · 10 ^{6 g}	[51]
$[Cr(tpe)_2]^{3+}$	-	-	-0.50 ^b	1.25	748 ^h	4.5 · 10 ^{6 h}	[52]
$[\text{Re}(L^{\text{Me}})_3]^+$	1.36 ^b	-1.6	-	-	480 ^b	8 ^b	[56]
$[\text{Re}(\text{phen})(\text{CO})_3(L^1)]$	1.09 ^b	-	-	-	571 ^c	740 ^c	[120]
[Re(NHC-py)(CO) ₃ (Cl)]	0.99 ^b	-	-	-	522 ^{с,е}	140 ^c	[65,121]
[Re(NHC-qu)(CO) ₃ (Cl)]	1.27 ^b	-	-	-	494 ^c	5 ^c	[65,122]
[Ir(ppy) ₂ (NacNac ^{NMe2})]	0.14 ^b	-2.2	-2.3 ^b	-	634 ^b	760 ^b	[71,72]
[Ir(sppy) ₃]	0.77 ^g	-1.89	-	-	508 ^g	1.6 · 10 ^{3 g}	[73,75]
[Pt(NHC-ArO-cbz ^H)]	-	-	-	-	446 ⁱ	6.1 · 10 ^{3 i}	[77]
[Pt(NHC-ArO-cbz ^{tBu})]	0.85 ⁱ	-2.13	-2.56^{i}	-	447 ⁱ	6.7 · 10 ^{3 i}	[77]
[Pt(S-quinoline)(Cl)(dmso)]	1.25 ^b	-1.22	-1.35 ^b	1.12	~540 ^b	-	[86]
[Pt(O-quinoline)(Cl)(dmso)]	1.58 ^b	-1.29	-1.43 ^b	1.42	~490, ~530 ^b	-	[86]
[Ce(Cl) ₆] ³⁻	0.41 ^b	-3.07	-	-	356, 387 ^b	22.1 ^b	[88]
[Ce(guanidinate ^{iPr}) ₃]	0.16 ^c	-2.54	-	-	459	83 ^j	[92]
[Ce(guanidinate ^{iPr})(amide) ₂]	0.47 ^c	-1.92	-	-	518 ^j	56 ^j	[92]

Organocatalysis⁷⁾

abbreviation $\lambda_{max}^{abs}(nm)$				excited state energies (eV)		ground state redox potentials (V vs SCE)		excited state redox potentials (V vs SCE): S ₁		excited state redox potentials (V vs SCE): T_1		
	$\lambda^{ m abs}_{ m max}(m nm)$	$\tau_{\rm f}({ m ns})$	$\phi_{ m f}$	$\phi_{ m ISC}$	$E_{0,0}^{S_1}$	$E_{0,0}^{T_1 a}$	$E_{1/2}^{red}$	$E_{1/2}^{\text{ox}}$	$E_{\rm red}^{S_1}$	$E_{ox}^{S_1}$	$E_{\rm red}^{{ m T}_1}$	$E_{\mathrm{ox}}^{\mathrm{T}_{1}}$
DCB	290 ²¹	9.7 ²²			4.01 ²²	3.04 ²³	-1.46^{22}		+2.55 ²²		$+1.58^{b,22,23}$	
DCN	325 ²⁴	10.3 ²⁵			3.57 ²⁵	2.41 ²³	-1.27^{25}		+2.3 ^{b,25}		$+1.14^{b,25,23}$	
DCA	422 ²⁶	14.9 ²⁵	0.76 ^{c,27}	0.0085 ²⁸	2.90 ²⁵	1.8127	-0.91^{25}		+1.99 ^{b,25}		+0.9 ^{b,25,27}	
BP	335 ^{d,29}	0.008 ³⁰		1.0 ³¹	3.22 ³⁰	3.0 ³⁰	-1.72^{31}	$+2.39^{31}$	+1.5 ^{b,31,30}	-0.83 ^{b,31,30}	$+1.28^{b,31,30}$	-0.61 ^{b,31,30}
MK	365 ^{e,32}				2.98 ^{e,32}	2.7 ³⁰	-2.20 ^{f,34}	$+0.86^{35}$	+0.76 ^{b,34,32}	$-2.12^{b,35,32}$	+0.48 ^{b,34,30}	-1.84 ^{b,35,30}
FLN	377 ³⁶	16.2^{31}		0.97 ³¹		2.31 ³¹	-1.35^{31}	$+1.7^{31}$			$+0.96^{b_r 31}$	$-0.61^{b,31}$
хо	340 ³⁷	< 0.0 ³¹		1.0 ³¹	3.4 ³⁰	3.22 ³⁰	-1.65^{31}	$+1.8^{31}$	$+1.76^{b_r 31_r 30}$	-1.61 ^{b,31,30}	$+1.57^{b,31,30}$	-1.42 ^{b,31,30}
ТХО	360 ³⁸	2 ³¹		0.99 ³¹	3.14 ³⁰	2.8 ³⁰	-1.62^{31}	+1.69 ³¹	$+1.52^{b_r31_r30}$	-1.45 ^{b,31,30}	$+1.18^{b,31,30}$	-1.11 ^{b,31,30}
TCBQ	450 ³⁹			1.040		2.46 ⁴¹	0.00 ⁴²				+2.46 ^{b,42,41}	
DDQ	~400 ⁴³			1.044		2.67 ⁴³	+0.49 ⁴²				+3.1843	
AQ	326 ^{e,45}			1.04 ⁴⁶		2.7346,47	-0.96^{42}				+1.77 ^{b,42,46}	
TPT^+	415 ^{g,48}	4.38 ²⁵	0.58 ^{g,48}	0.42 ⁴⁸	2.83 ²⁵	2.3 ^{h,49}	-0.32^{25}		+2.55 ^{b,48,25}		$+2.02^{b,48,49}$	
p-OMeTPT ⁺	422,470 ^{<i>h</i>,50}	4.0 ⁹	0.95 ⁹ 0.49 ⁵¹	0.03 ⁵²	2.34 ^{<i>i</i>,50}	2.21 ^{h,49}	-0.50 ^{<i>j</i>,50}		$+1.84^{b_r 50}$		+1.71 ^{b,50,49}	
TTPP ⁺	414 ⁵⁰	3.6 ^{g,54}	0.03 ⁵⁴	0.94 ⁵²	2.64 ^{<i>i</i>,50}	2.2855	$-0.19^{i,50}$		+2.45 ^{b,50}		$+2.09^{b,50,55}$	
n-OMeTTPP*	45550	0.0			2.23 ^{i,50}		$-0.33^{j,50}$		+1.9 ^{b,50}		,	
NMO+	31556	20 ⁵⁷	0.79 ^{k,58}		3.50 ²²		-0.8559		+2.70 ⁵⁹			
OuCN+	329 ⁶⁰	45 ⁶¹			3.32 ²²		-0.60^{62}		$+2.72^{61}$			
~							-0.79^{63}					
Acr-Me+		37. ⁵⁷ 34 ²⁵	1.0 ^{1,64}		2.80 ²⁵		-0.46^{25}		+2.3265			
Ph-Acr-Me+	424 ⁶⁶	1.566	0.06366				-0.54 ^{m,67}					
Mes-Acr-Me+	42.5 ⁶⁸	6 ⁶⁹	0.035 ⁶⁹	0.3869	LE: 2.67 ⁶⁹	LE: 1.94 ⁶⁹	-0.49^{68}		LE: +2.18 ⁶⁹		LE: +1.45 ⁶⁹	
			0.08**,70		CT: 2.57 ⁶⁹		-0.57^{71}		CT: +2.08 ⁶⁹		CT: +1.88 ⁷²	
AO	425 ⁷³					2.5873	-2.4^{73}				+0.60°,73	
AOH ⁺	495 ⁷³	1.875	0.18 ^{1,76}		2.58 ^{d,77}	2.0777	-1.18°,73				+0.95°,73	
					$2.43^{p,78}$	2.13 ^{p,78}						
AcrF ⁺	470 ^{p,78}		0.54 ^{1,64}		2.56 ^{p,78}	2.22 ^{p,78}						
PF	393 ^{1,79}											
PFH ⁺	470 ^{p,78}	~5 ^{1,80}	0.39 ^{1,76}	0.10 ^{1,81}	$2.56^{p,78}$	2.22 ^{p,78}	-0.74 ^{1,79}		$+1.82^{b,79,78}$		$+1.48^{b,79,78}$	
PTh	<300 ⁸²	0.81-2.382			2.89,83	2.4 ⁸³		$+0.68^{83}$		-2.1^{83}		-1.7 ^{b,83}
MB ⁺	650 ^{r,84}	1.05,86		0.52 ^{e,89}	1.8988	1.5088	$-0.30^{d_{f,77}}$	+1.13 ^{d,f,77}	+1.56 ^{d,f,77}	-0.73 ^{d,f,77}	$+1.60^{d_{i}f_{i}77}$	-0.68 ^{d,f,77}
	664 ^{1,85}	0.6 ^{d,87,88}				1.8577					+1.14 ^{b,77,88}	-0.33 ^{b,77,88}
[FL] ^{t,u}	FLH::4371,93	4.2 ^{d,90}	FLH ₂ : 0.2 ⁹³	0.0377	2.42 ^{d,77}	1.9477	$-1.17^{d_{i}f,77}$	+0.87 ^d ,77	+1.25 ^{d,f,77}	$-1.55^{d,f,77}$	+0.77 ^d ,f,77	-1.07 ^{d,f,77}
2 3	FL ²⁻ : 491 ^{1,93}	4.73 ^{d,77}	FL ²⁻ : 0.93 ⁹³				$-1.22^{d_{s}f,90}$	+0.83 ^{d,f,90}				
$[\mathbf{EY}]^{u,t}$	520 ^{d,90}	2.1 ^{<i>d</i>,90}	0.48 ^{d,77}	$0.32^{d,77}$	2.31 ^{<i>d</i>,90}	1.9177	$-1.08^{d_{f,77}}$	+0.76 ^{d,f,77}	+1.23 ^{d,f,77}	$-1.58^{d,f,77}$	+0.83 ^{d,f,77}	-1.15 ^{d,f,77}
LJ	533 ^{e,91}	2.66 ^{d,77}	$0.19^{\nu,64}$				$-1.13^{d_{f,90}}$	$+0.72^{d_{g}f,90}$				
[RB] ^{<i>u</i>,<i>t</i>}	549 ⁹²	0.5077	0.09 ^{d,77}	0.77 ^{d,77}	2.17 ^{d,77}	1.877	-0.99 ^{d,f,77}	+0.84 ^{d,f,77}	+1.18 ^d ,77	-1.33 ^{d,f,77}	+0.81 ^d ,77	$-0.96^{d_{y}}$
							-0.78^{94}					
[RhB]	550 ^{1,95}	2.45 ^d ,77	0.58 ^{d,77}	$0.12^{d,77}$	2.22 ^{d,77}	1.8077	-0.96 ^d , ⁷⁷	+0.91 ^d ,77	$+1.26^{d_{i}f_{i}77}$	$-1.31^{d_{s}f,77}$	$+0.84^{d_sf,77}$	$-0.89^{d_{1}f,77}$
[Rh6G]	530 ^{e,96}	4.13 ^{d,97}	0.90 ^{1,98}	0.0024	2.32 ¹⁰⁰	2.0999	$-1.14^{f,100}$	$+1.23^{102}$	+1.18,100	-1.09 ^{b,100,102}	+0.95 ^{b,99,100}	-0.86 ^{b,99,102}

Example 3. (2+2) Photocycloaddition [Yoon (2017)¹¹⁾]

Example 4. Singlet Oxygen [Tanino (2004)¹²]

Reference

11) Yoon, T. P. et al. Angew. Chem. Int. Ed. 2017, 56, 11891-11895.

12) Tanino, K. et. al. Science 2004, 305, 495.

1-3. Application of Photochemistry to "Classical" Reaction

Reference

13) Leonori, D. et al. Nature. 2022, 610, 81-86.

14) Leonori, D. et al. Angew. Chem. Int. Ed. 2022, 62, e202214508.

2. Oxidative Cleavage/Dihydroxylation of Alkenes

2-2 Overcoming Limitation of Classical Reaction

High Turnability of Nitroarene = Regioselective Oxidative Cleavage

Oxidative Cleavage of Complex Molecules

. Oxidative Decarboxylative Reaction

Key point : Oxidant is present in Catalytic Amount.

- 15) MacMillan, D. W. C. et al. *J. Am. Chem. Soc.* **2014**, *136*, 10886-10889. 16) MacMillan, D. W. C. et al. *J. Am. Chem. Soc.* **2015**, *137*, 624-627.
- 17) MacMillan, D. W. C. et al. Nature. 2016, 536, 322-325.

3. Oxidative Decarboxylative Reaction

3-3 Overcoming Limitation : Generation of Aryl Radical (•Ar)

- 18) Ritter, T. et al. J. Am. Chem. Soc. 2021, 143, 5349-5354.
- 19) MacMillan, D. W. C. et al. J. Am. Chem. Soc. 2022, 144, 8296-8305.
- 20) MacMillan, D. W. C. et al. J. Am. Chem. Soc. 2022, 144, 6163-6172.

3. Oxidative Decarboxylative Reaction

Reference

21) West, J. G. et al. Nat. Chem. 2023, 15, 1683-1692.

22) Julia-Hernandez, F. et al. Angew. Chem. Int. Ed. 2024, 63, e202311984.

3. Oxidative Decalboxylative Reaction

3. Oxidative Decalboxylative Reaction

4. Nucleophilic Addition

4-2 Photochemical Reaction

4. Nucleophilic Addition

Reference 26) Glorius, F. et al. J. Am. Chem. Soc. 2018, 140, 12705-12709.

27) Kanai, M. et al. Chem. Sci. 2019, 10, 3459-3465.

5. Pinacol-type Coupling

онон

 $R_2 R_2$

R₁

TiCl₄-Zn

McMurry

coupling

0

R

Effect of Antenna Ligand (Stern-Volmer experiment)

